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Work recently reported by the authors (Perry & Abell 1975) on smooth-walled 
pipe flow showed support for the Townsend (1976) structural similarity principle 
as regards viscosity not being directly relevant in controlling the mean relative 
motions and the energy-containing turbulent motions. The work also supported 
a universal spectral behaviour in the wall region of the flow. In  many hypotheses 
for rough-walled pipe flow, surface roughness, like viscosity, enters the problem 
only via external boundary conditions. Data obtained in a rough pipe are 
reported here and on first appearance the results seem to contradict the Townsend 
hypothesis and to threaten the very foundation upon which many similarity 
laws for rough-walled flows are based. However, on closer examination of the 
spectrum scaling of smooth-walled pipe flow the low and high wavenumber 
energy not necessarily associated with the universal similarity range can be 
accounted for. The broad-band longitudinaI turbulence results for a rough- 
walled pipe can then be predicted from the smooth-wall scaling. The conclusion 
is that, despite the apparent anomalies, the turbulence structure in a rough 
pipe appears to follow the same scaling laws as for a smooth pipe, given a sufficient 
length of flow development in both cases. The deduced functional forms are 
consistent with Townsend’s (1976) attached-eddy hypothesis. 

1. Introduction 
The authors interpret the Townsend (1976) Reynolds number similarity 

hypothesis, when applied to fully developed pipe flow, to mean the following. 
All mean relative motions and energy-containing components of the turbulent 
motions are independent of viscosity and surface roughness except in so far as 
these variables may affect the boundary conditions on the flow. This will be 
referred to here as simply the ‘ Townsend hypothesis’ and is presumed to be 
valid across the entire pipe cross-section except for thin viscous and roughness 
zones very close to the pipe walls. 

The velocity defect law for the mean flow follows from this hypothesis, and 
viscosity or surface roughness influences only the value of the shear velocity 
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u, and the velocity of ‘ slip’ at the boundary for a given velocity U, at the pipe 
axis and given pipe radius R. Postulates about an ‘inner law’ and a region of 
overlap with the defect law lead to a logarithmic distribution of mean velocity 
over some ‘‘possibly small but finite region” (Millikan 1938). The mean flow data 
have been very successfully correlated in this way, but attempts to correlate 
turbulence quantities such as z /u :  (where u is the streamwise velocity fluctua- 
tion and the overbar represents a time average) using analogous techniques have 
been far from satisfactory. Much of the reason for this has been poor calibration 
techniques for the instruments used to measure the velocity fluctuations. Perry 
& Abell (1975) succeeded in obtaining what appeared to be a consistent set of 
data by using very careful dynamic calibration methods (Perry & Morrison 
1971). By postulating a region of overlap between an inner law and an outer 
law, a region where g /u :  = H (a universal constant) can be deduced. Their 
measurements apparently confirmed this deduction for smooth pipes for the 
Reynolds number range Re = 80 x lo3 to 260 x lo3 (based on pipe diameter d 
and centre-line velocity U,) and they tentatively set the region of validity as 
y+ > 100 and y/R < 0.1. (Here y is the distance normal to the wall and y+ = yu,/v, 
where Y is the kinematic viscosity.) This corresponds closely to the region of 
validity of the logarithmic law for the mean flow. Hence it would appear that the 
turbulence quantities are as well behaved as the mean flow quantities, as most 
workers either expected or hoped. However, as will be seen later, the whole 
problem of the scaling of turbulence intensities is far more complex and it seems 
unlikely that a universal value for H is applicable. 

Difficulties start to appear when one considers the turbulence spectra. Perry 
& Abell proposed that in the region of constant .L”/u; (referred to here as the wall 
region) a universal wall similarity is valid for the energy-containing motions, i.e. 

where k is the longitudinal wavenumber and the energy spectrum function 
@(k) is normalized to give - 

Joa @ ( k ) d k  = u2. 

Although this proposal showed a considerable improvement in data correlation 
over past proposals, the scatter in the results cannot be explained by experi- 
mental error. The low wavenumber range shows systematic departures and 
these motions contain appreciable energy. These departures have been noted by 
many authors and are often referred to as the ‘inactive’ motions. The authors 
prefer to call them the ‘non-universal’ motions, as distinct from those satisfying 
(l), the ‘universal’ motions. It is hoped that the formulation for the latter can 
be transferred to other flows (boundary layers, rectangular ducts, etc.) while 
the former motions are particular to a given large-scale external geometry. 

The best way of explaining one cause of the scatter in the spectra is that all 
results were obtained using an electronic filter whose sensing element was fixed 
in laboratory co-ordinates. This gives frequency signals which depend on the 
velocity of convection of the turbulence structure past the transducer. The basis 
of the Townsend hypothesis is that absolute velocities are not involved, only 
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relative motions. A stationary filter generates contaminated spectral estimates 
and the spectra should really be expressed in terms of quantities which are 
invariant with the velocity of the observer. A spectral form which contains such 
quantities can be derived from a function suggested by Ffowcs Williams (e.g. 
see Wills 1964) : 

a -  
W ( k , c )  = - ’ !! u2R(6, 7 )  exp ( ik(6-  c7)> d6d7, (W --m 

where R(6,7) is the two-point space-time correlation coefficient, 6 is the stream- 
wise spacing of the sensing elements and 7 is a time shift. 

The function W is expressed in terms of the wavenumber k and phase velocity 
c. Now it can be shown that if W,(k, c) is the spectrum function measured by an 
observer in laboratory co-ordinates, then the spectrum function W, measured 
by an observer moving with velocity V is given by 

n$(k, c )  = W,(k, c - V ) .  

This means that W ( k ,  c) contours translate without distortion on the k ,  c plane 
for a change in velocity of the observer and hence it is possible to express W, in 
terms of relative phase velocities which are independent of the observer. By 
convention let V = U in what follows. 

Expressed in non-dimensional terms, the universal wall similarity hypothesis 
then becomes 

W C-U 
YU,  - =f.(ky,-). UT 

One would expect the small-scale motions to be convected at the local mean 
velocity U with a small spread in phase velocity whereas motions of very large 
scale would be convected at a velocity closer to U,. These large-scale motions 
cause the slow ‘sloshing ’ around of the viscous sublayer (at frequencies scaling on 
outer-flow variables) as the large-scale motions travel faster than the fine-scale 
motions closer to the boundary. Hence at low non-dimensional wavenumber 
ky, one would expect a spread in phase velocity of the order of ( U  - Ul)/u7. 
Now, from the logarithmic defect law 

(3) ( U  - U,)/uT = K-, In yIR - C, 

where K and C are universal constants. Thus in view of (3), (2) must be modified 
to include y / R  as a parameter far the low wavenumber range, giving 

Figure 1 shows conjectural contours of W/yu,  for three different relative velo- 
cities of the observer for a given y /R.  The relative velocity can be varied in a 
number of ways if the observer is fixed to laboratory co-ordinates: one way is 
to change the Reynolds number of the flow and another is to retard the flow 
locally by surface roughness, the retardation being the roughness function 
Aulu, (see Hama 1954; Clauser 1954). 

50-2 



788 A .  E .  Perry and C .  J .  Abell 
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FIGURE 1. Conjectured contours of the spectrum function W/gu,. (a) Rough-wall case. 
(b)  Smooth wall; same Reynolds number. (c )  Smooth wall; high Reynolds number. The 
shaded areas represent energy-containing regions. 

The function @(k)/gu; is obtained by integrating W(k,  c)/yu7 along horizontal 
strips A(ky)  wide. However, a stationary observer with a frequency-band filter 
will be integrating along hyperbolic strips of width A(wy/u,). 

For a smooth-walled pipe, as Re+--oo, RuJv  ( = R,) +a and, since 

UJu, = K - ~  In R, + D 

(where D is a universal constant), Ul/u7 -+ 00. Hence (U, - c)/U, (the fractional 
spread in phase velocity) diminishes, and so for large Ul/u7 one can use the Taylor 
transformation 

since then the hyperbolic strips contain the same energy as the horizontal strips, 
and U will be approximately U,. If P(w) is the power spectrum measured by a 
stationary filter, then @(k) tends towards UP(@) with increasing U,lu7 and 

k = w/u ( 5 )  

- jom P ( w ) d w  = u2. (6) 

However, at low UJu7 and low ky,  the inferred spectrum @(I%) obtained from 
P(o)  using (5) could be distorted because the hyperbolic strips cut the energy- 
containing contours in a different manner to the horizontal strips. Also the 
contours might peak a t  a phase velocity c substantially different from U .  From 
the figure one would expect estimates of @(k) for rough-walled pipe flow obtained 
by measuring P(o)  to be highly distorted. What is really needed is a direct 
mapping of W(k,  c)/yu7 obtained from measurements of R(6, T ) ,  a tedious process 
requiring two hot wires one behind the other, with the inevitable flow inter- 
ference. Laser-Doppler methods look hopeful if the measuring volume could be 
made sufficiently small and if the problems of signal drop-out and frequency 
broadening could be resolved. Until these difficulties are overcome one must be 
content with the ‘electronic filter’ function P(w). 
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FIGURE 2. Measured variation of the roughness function Au/ur 

in the rough-walled pipe. h is the roughness height. 
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FIGURE 3. Measured variation of shear velocity with Reynolds number for both 

smooth- and rough-walled pipes. 0, rough wall; 0, smooth wall. 

Recent experiments carried out by the authors with a rough pipe gave broad- 
band results which differed appreciably from the results for smooth-walled pipe 
flow. Since these are broad-band data, the velocity of the observer cannot 
explain the anomaly. The authors consider this result significant and disturbing 
in that it suggests a dependence of broad-band tarbuIence structure on the 
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physical details of the inner boundary conditions. It is shown here that a likely 
explanation is that the smooth-walled pipe flow had not reached its asymptotic 
state. From a careful examination of the measured spectra, the correct asymp- 
totic state can be predicted, which shows the two sets of data to be compatible. 

2. The rough-walled pipe 
For the rough-wall measurements the inlet contraction used for the smooth- 

walled pipe (see Perry & Abelll975) was attached to a thick-walled steel tube of 
internal diameter 0.102 m. To enable the roughness to be fitted to the internal 
surface, the pipe was cut into six equal lengths and, after annealing to reduce 
residual stresses, each length was slit longitudinally and accurately shimmed 
each side. By turning the outside diameter of both ends of each length concentric 
to the bore, the sections could be fitted together with minimal irregularities at 
the joins. The roughness used was nylon mesh of hexagonal weave (cell size 
2.5 mm) and nominal height 0.25 mm. 

The variation of the roughness function AuIu,, obtained from the mean flow 
profiles, is shown in figure 2, and figure 3 shows the Reynolds number variation 
of u,/Ul, obtained from static-pressure measurements. The figures suggest that 
the rough-walled pipe flow is in the fully rough regime for Re > 280 x los. 

3. The energy chain in pipe flow 

I n  the region of universal wall structure 

The hypothesis of universal wall structure 

W)l?lu4 = fl(k?l), (7) 

where @(k) is the energy per unit ‘inferred ’ wavenumber, obtained using (5 ) .  
If this were valid over the entire wavenumber range of the spectrum then 

However, (7) must break down a t  very low wavenumbers where the large-scale 
geometry of the apparatus has an influence, and a t  the wavenumbers sufficiently 
high for viscous dissipation to have an effect. 

Low wavenumber range 
In  the low wavenumber range, (7) must be reformulated to include the pipe 
radius and, at  extremely low wavenumbers, perhaps the length of the pipe L. 
Ignoring the effect of L for the time being we have 

@(k)lYu: = f,(Y/& kY)* (9) 

Of course @(L) cannot really be obtained from P ( o )  by the simple Taylor trans- 
formation (5) since the structure has a phase velocity quite different from the 
local mean velocity U .  The phase velocity would be nearer U,, possibly with a 
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FIGURE 4. Smooth-wall longitudinal turbulence spectra for the wall-distance range 
y+ > 100 and y/R c 0.1. Reynolds number range = 80 x 103 to  260 x lo3, symbols as for 
figure 11 of Perry & Abell (1975). 

wide spread for a given Icy, and it is only at unattainably high Reynolds numbers 
in a smooth pipe that the Taylor hypothesis will become valid at  small y / R  for 
these large-scale motions. Let it be assumed, however, that the actual form of 
@(k) is known. 

An overlap of (7)  and (9) leads to a particular form for the spectrum function: 

or 

This form was suggested by Abell (1974) and was deduced on the basis of the 
requirement that @(k) asgiven by (9) must be independent of the wall distance y .  
Equation (9) then becomes completely consistent with (10) in the region of 
overlap. Experiment certainly indicates extensive regions where (10) is valid, 
indicating a substantial overlap region. (See figure 4.) A noteworthy feature of 
(10) is that it is valid independent of the velocity of the observer. The data 
points simply shift along the line of slope - 1 shown in figure 4, irrespective of 
whether or not the inferred wavenumber is correct, 
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t-- The Townsend hypothesis --+ f-- Dissipation region d 

+ Low w a v e n u m b e r j  
Large-scale non-universal t Kolmogorov region: -------------)+ 
motions: 

@ ( k ) / Y 4  = fa(Y/R, kY) @ ( k ) / v 2  f 5  ( k v )  
k y = P \  I ( k y = N  

0 0 0-0-0 - kY 
kY = FY/RP 5 kq = M or k y  = ( M / d )  y$ 

-+ t Regionof 
t Region -+ overlap 11: 
of overlap I: @fkl  B 1 

t Universal wall + 
structure: 

@(k)/Y% = f , ( k y )  

TABLE 1. The energy chain in a pipe. 

High wavenumber range 

It could be speculated that in pipe flow the dissipation and energy-containing 
ranges strongly overlap, i.e. the eddies are produced and dissipated without 
substantial energy transfer. The authors proceed with the more conventional 
view that viscosity plays no part in the range of universal wall structure, but 
that there exists a Kolmogorov region, in which 

@(k)/7u2 = f5(kr) ,  (11) 

7 = (US/€)$, u = ( V E ) , ,  (12) 

where the function fs is universal and 7 and u are the Kolmogorov length and 
velocity scales, given by 

where E is the dissipation. 
For purposes of calculation, a good assumption is Townsend's (1961) proposal 

that in the fully turbulent part of the wall region production of energy is in balance 
with dissipation. Here the production p is 

p = -Zauiay 
and for sufficiently small yIR 

This gives 
p = 8 = U : / K y .  

U = ( V U ~ / K y ) ~ ,  7 = { U 3 K ~ I U ~ ) ~ .  

The dissipation range begins at a universal value of Icy = M ,  corresponding to 

where y+ = yu7/v. 
A region of overlap between the dissipation region and what is referred to 

here as the universal wall region, where (7) holds, implies isotropic properties for 

kY = ( M / K M  (16) 
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FIGURE 5. The integral I l ( y /R)  obtained from (22) and the smooth-pipe data with B = 1.37, 
M = 0-08, N = 2.154 and K = 0.41. +, asymptotic curve, I I  (as a function of y / R  only) 
obtained by extrapolation of curves in figure 6. 
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these small-scale motions, and the region of overlap is commonly termed the 
‘inertial subrange’. In  this inertial subrange (11) is valid but v is not involved 
explicitly. This leads to the well-known result that 

W)/V2 = KO/(k7)f, (17) 

where KO is the Kolmogorov constant. By the use of (15), (17) becomes 

which is recognizable as a partionlar form of (7). Thus the spectrum and the various 
wavenumber regions can be summarized as in table 1. 

4. Estimation of the spectral-energy contribution from 
smooth-pipe data 

Figure 4 shows the measured spectra for the smooth-walled pipe. Integrations 
with respect to Icy are performed over the following regions to obtain broad-band 
contributions : 

0 kY N ,  W ) / Y 4  = f,(Y/R, ICY), (19) 

N < Icy < M ~ - f y $ ,  cD(k)/& = B(Icy)-f, (20) 

where B = h ’ , ~ - f .  Hence 



794 A .  E. Perry and C. J .  Abell 

5.4, 1 I I I I I I I I I I I I 1 

5.2 

5.0 

4.8 

- 6. 4.6 
? 
d 
v s” 
I-; 4.2 

- 4.4 

4.0 

3.8 

3.6 

0.036 0,038 0.040 0.041 0.044 0.046 0.048 0.05 

% P I  

FIGURE 6. Cross-plot of the results shown in figure 5. (The data points are experimental 
and the full curves are from the fit to the data.) 

I n  (21) the first term 1, gives the total amount of energy outside the Kolmogorov 
range. The energy contribution of the dissipation range of wavenumbers, 
typically O(+&), is neglected, but account is taken of the growth of the range 
of universal wall similarity with y+, and all large-scale motions are included in 
the integral I,(y/R). 

From (21), - 
u2 3 B 3 BKQ 
u: 2 N 3  2 ~ g & ’  

I,(y/R) = - - - - +- - 
Using the measured values of G/u: and estimates of B, N and M ,  obtained from 
the data of figure 4, with K = 0.41, I,(y/R) was evaluated using (22) and is shown 
in figure 5. 

Estimation of I, from (22) does not require any assumptions about the form of 
the low wavenumber range and avoids the direct integration of that part of the 
spectrum most likely to be contaminated by invalid use of the Taylor trans- 
formation. The resulting I,( y/R) shows a significant and apparently systematic 
trend with Reynolds number. This is impossible for a fully developed flow since 
the large-scale motion must be independent of viscosity. An alternative parameter 
to attach to the curves is u7/Ul, but, again, this contradicts the Townsend hypo- 
thesis since absolute velocities like U, should not enter if the results are un- 
contaminated. 

Contamination by u7/Ul may arise from four possible physical sources. 
(i) Additional turbulence produced via the screens and the contraction a t  the 

pipe entrance. However this would show the opposite Reynolds number trend. 
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(ii) Fixed-frequency high-pass filtering of the anemometer signals, causing 
differing proportions of broad-band energy to be cut off. Again the trend is the 
wrong way. 

(iii) Area-normalization of measured spectra to ?/u$ Since at low wave- 
numbers the inferred @(k) is in error because of the large difference in phase 
velocities, estimates of the constant B couId be in error. However, the trend 
with u7/Ul cannot be removed by changing the value of B. 

(iv) Lack of sufficient flow-development length. This seems the most likely, 
and support for this was obtained by cross-plotting the data as shown in figure 6. 

Here it can be seen that Il becomes independent of UJV,  for u,/Ul sufficiently 
large. The asymptotic form of Il(y/R) is shown in figure 5 as the solid line. For a 
smooth-walled pipe flow, the asymptote is reached by decreasing the Reynolds 
number. If viscosity were causing the trends directly, one would expect to 
reach asymptotic behaviour by increasing the Reynolds number. Thus viscosity 
must be entering via its influence on some large-scale boundary condition. 
Further, the wavenumbers a t  which these departures occur have values approach- 
ing the order of the reciprocal of the length of the pipe. These points support 
the view that insufficient development length is the cause, and this is consistent 
with the u7/Ul trends. 

For the purposes of order-of-magnitude calculations, the boundary layers in 
the entrance length of the pipe are considered approximately self-preserving, 
with u7/Ul approximately constant over most of the development length. As the 
boundary layers grow, they finally meet and, after a settling length, fully 
developed flow is achieved. If the development length is approximated as 
proportional to the length required for the layers to meet, then 

(from approximate two-dimensional boundary-layer theory with d6ldx = (uT/UJ2, 
where 8 is the momentum thickness).? The higher u7/Ul, the more rapid will be 
the boundary-layer growth. For rough pipes u7/Ul is substantially higher for the 
same flow Reynolds number, giving a very rapid growth rate. 

5. Prediction of results for rough-walled pipes 
The large-scale geometry of the rough-pipe apparatus was identical in all 

respects to that used in the smooth-pipe experiments. The measuring station 
was located a t  the same number of pipe diameters from the entrance in both 
cases (84.7).  

By using the experimental mapping of Il(y/R, u,/U1) obtained from the 
smooth-wall experiment (shown in figure 5 )  with some extrapolation, the broad- 
band G/u: distributions can be predicted for the rough-pipe flows given u7/Ul 
and either R, or Re. The correlation between the data and the predictions is 
shown in figure 7. No new constants whatsoever have been introduced for the 

t A simple analysis based on (23) with u,/U, = 0-04 (typical for smooth-pipe flows) 
suggests that l /d  should be at least 150 for the flow to approach fully developed conditions 
for this particular case. 
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FIGURE 7. Comparison of rough-wall broad-band turbulence data with predictions based 
on the smooth-wall results. The full curves were obtained from (21) with Il(y/R, uT/Ul )  
taken from figure 6. 
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Closed symbols represent measurements corrected for the spatial averaging effect of hot 
wires (using the method of Wyngaard 1968); open symbols show uncorrected data. 

rough-pipe calculations. Thus the assertion that rough-walled pipe flow obeys 
the same structural similarity laws as smooth-walled pipe flow receives en- 
couraging support. The departures from the data could well be caused by the 
extrapolation procedure. The trends and the order of magnitude of the change 
from smooth- to rough-pipe data are predicted reasonably well. 

w. Asyrripucir; oruau-uanu prunies 

entrance, it should be possible to predict the complete family of G/u: profiles. 

For very low wavenumbers, ( l o b )  can be generalized to read 

For xd-1(u,/Ul)2 large, where x is the streamwise distance from the pipe 

The functional form of Il(y/R) for fully developed flow can now be deduced. 

This is consistent with the physical argument that the scale of very large motions 
will be limited by the size of the pipe and their contributions to .."I.: will be 
fairly insensitive to y for low y / R  ( <  0.1). This equation will gradually merge 
into ( l o b )  for increasing kR. Let F be the universal value of kR a t  which this 
merging begins. 
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FIUURE 8. Equation (28) for full range of R, used. 

Experimental data also show that ( l o a )  is valid almost up to ky = N .  Hence, 
with the aid of (loa), the integral 

may be written as 

The first integral is a characteristic constant for circular pipes and the second 
integral will be logarithmic. After regrouping various constants this gives 

II,(Y/R) = Q - A  In ( y / R ) .  (25 )  

From the spectrum function A 2: 0.8, and by curve fitting to the extrapolated 
results shown in figure 5,  Q N 2-3. Also shown in the figure is a linearized approxi- 
mation Il = 5-66- 13*3(y/R),  which is valid provided that 0-03 < y/R < 0.1. 

From (21) 
I .  = T - CY+*, 

uz/uf = S - A In (y/R) - c y ~ * ,  

(26) 

(27)  

u?/u2, = S-Aln y++AlnR+-cy$. (28 )  

where T = 1-23 and c = 9.54. Hence from (25 )  and (26) 
- 

where S N 3-53. Equation (27) can also be written as 
- 

Equation (28) is plotted in figure 8 for the full range of R, considered in this paper, 
covering all the smooth- and rough-wall results. Also shown is the corresponding 
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FIGURE 9. Non-asymptotic case. Smooth-walled pipe, Re = 2.6 x 106, u,/Ul = 0.0368, 

z/d = 84-7. The full curve was obtained from (21) and figure 5. 

spread of experimental data. Experimental results and asymptotic predictions 
appear to agree for the highest (rough wall) R+ values. 

The presence of the logarithmic singularity in (27) is consistent with the 
deductions of Townsend (1976), who arrived at a similar result via a quite 
different line of reasoning using his attached-eddy hypothesis. I n  laboratory 
turbulence, the effect of this singularity on a>/u: vs. y/R plot would be weak 
since low values of y / R  cannot be achieved outside the viscous or roughness zones 
because of an insufficiently large R,. However, in atmospheric turbulence, the 
effect could be strong. 

7. Non-asymptotic predictions 
For flow situations without a sufficient development length the function 

Il(y/R,u,/Ul) must be used. For the particular situation x/d = 84.7 one case of 
interest is Re = 2.6 x lo5. The asymptotic case given by (28) had not been 
reached and the values of I1 given in figure 5 were used. The resulting profile 
'kicks up' slightly as shown in figure 9. Such behaviour is typical of flows with 
an insufficient length of flow development. I. A. Hunt (Department of Mechanical 
Engineering, University of Melbourne, private communication) has recorded 
similar profiles in flows in rectangular ducts of high aspect ratio. 

8. Conclusions 
From a study of smooth-walled pipe flow, longitudinal turbulence energy 

spectra and the various regions and governing variables have been proposed. 
Careful examination of the scaling of these spectra suggests that the data of 
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Perry & Abell (1975) had not reached an asymptotic state. By extrapolation of 
the spectral laws derived from the data, the asymptotic state can be predicted 
and has been shown to be consistent with results for rough-walled pipe flow, 
which approach asymptotic conditions more rapidly than did the smooth-pipe 
results. 

Provided the length of flow development is sufficiently large compared with 
d(u,/U,)-2, the broad-band longitudinal turbulence profile in the wall region can 
be expressed as [equation (28)] 

- 
uz/u4 = S- Aln y++ A In R+- cy& (29) 

where S = 3.53, A = 0.8 and c = 9.54. A and c are universal constants and hope- 
fully could be used in other flows such as rectangular ducts or boundary layers. 
However, the constant S is particular to circular pipe flow. Contributions to 
this constant are made by the universal motions and by the non-universal 
motions. The ratio of these contributions will not be known until the spectral 
function W(k,  c )  has been mapped out. 

By assuming a region of overlap in the spectrum between the low wavenumber 
non-universal motions and the high wavenumber universal motions a logarithmic 
distribution inplw; can be deduced. This is consistent with Townsend’s attached- 
eddy hypothesis. 

Until further work is carried out, the authors tentatively set the region of 
validity for (28) as yf 2 100 and y / R  < 0.1, which is also the region of validity 
of the logarithmic law for the mean flow. 
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